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Abstract
Background: Epileptic	 seizures	 can	 lead	 to	 changes	 in	 autonomic	 function	
affecting	 the	 sympathetic,	 parasympathetic	 and	 enteric	 nervous	 systems.	
Changes	 in	cardiac	 signals	are	potential	biomarkers	 that	may	provide	an	extra-
cerebral	indicator	of	ictal	onset	in	some	patients.	Patients	suffering	from	epilepsy	
experience	some	significant	cardiac	changes	during	seizure,	causing	some	serious	
cardiac	malfunctions	which	may	lead	to	sudden	unexpected	death	(SUDEP).	The	
fluctuations	 observed	 in	 the	 heart	 rate	 during	 the	 process	 are	 non-linear	 and	
extremely	 complex.	 Chaos	 based	 non-linear	 methodology	 has	 become	 a	 very	
powerful	tool	in	recent	years	in	analysing	such	complex	systems.	Although	a	few	
papers	on	effect	of	seizure	have	been	reported	where	study	was	done	to	assess	the	
dynamics	of	cardiac	systems	for	post-ictal	patients	not	using	non-linear	technique,	
this	paper	reports	the	analysis	of	ECG	signals	of	post-ictal	patients	using	a	modern	
and rigorous non-linear technique.

Methods and findings: Multifractal	 detrended	 fluctuation	 analysis	 (MFDFA)	
technique	has	been	applied	here	 to	determine	 the	degree	of	multifractality	 of	
cardiac	 dynamics	 quantitatively	 of	 five	 women	 patients	 suffering	 from	 partial	
seizures.	The	analysis	of	the	ECG	clinical	data	obtained	from	‘PhysioNet’	database	
shows	that	the	degree	of	multifractality	or	complexity	for	each	subject	is	different	
indicating	the	difference	of	severity	of	occurrences	of	seizure.

Conclusion: The	study	reveals	that	the	degree	of	autonomic	deregulation	can	be	
quantified	with	the	help	of	two	parameters,	the	multifractal	width	and	the	auto-
correlation	exponent.

Keywords: Epilepsy;	Electrocardiograph;	Non-stationary	time	series;	Multifractality;	
Multifractal	width;	Auto-correlation	coefficient
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Introduction
Heart	 is	one	of	the	most	 important	organs	of	human	being.	An	
electrocardiograph	(ECG)	is	a	bioelectrical	signal	which	records	the	
heart's	electrical	activity	versus	time.	It	is	an	important	diagnostic	
tool	 for	 assessing	 heart	 functions	 [1].	 Heart	 rhythm	 disorders,	
known	 as	 arrhythmias,	 present	 abnormal	 electrical	 activities	
due	to	cardiovascular	diseases	[2].	Cardiovascular	disease	is	one	
of	 the	major	 causes	 of	 death	 in	 the	world.	 Rapid	 arrhythmias	
(greater	 than	 100	 beats	 per	 minute)	 are	 called	 tachycardias.	
Slow	arrhythmias	 (slower	 than	60	beats	per	minute)	are	called	
bradycardias.	 Irregular	heart	rhythms	are	called	fibrillations	 (as	
in	atrial	fibrillation	and	ventricular	fibrillation)	[1].	

Epilepsy is one of the most common neurological disorders, 
second only to stroke, with a prevalence of 0.6% to 0.8% of the 
world's	population	[3].	Electroencephalograms	(EEGs)	and	brain	
scans	 are	 common	 diagnostic	 test	 for	 epilepsy	 [4].	 Epileptic	
seizures	 may	 be	 associated	 with	 autonomic	 deregulation	
manifesting,	 for	 example,	 blood	 pressure	 (BP)	 and	 heart	 rate	
(HR)	 changes	 [5].	Depending	on	 the	 region	of	 the	brain	 that	 is	
compromised during seizures, acute changes in heart rate and/
or	respiration	can	be	seen.	Besides	the	respiratory	effects,	such	
as	apnoea,	complex-partial	seizures	(CP)	seem	to	affect	the	heart	
rate either through tachycardia or bradycardia, which in turn 
might	be	related	to	sudden	unexplained	death	[6].
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The	 widespread	 cardiac	 effects	 of	 epilepsy	 may	 range	 from	
minute	changes	in	heart	rate	variability	(HRV)	to	ictal	sinus	arrest.	
HRV	reflects	the	beat-to-beat	alterations	in	the	HR	and	is	mainly	
modulated	 by	 parasympathetic	 and	 sympathetic	 activity.	 HRV	
can	be	used	as	a	tool	to	show	information	on	the	functional	state	
of the autonomic nervous system. HRV is a mirror of neuronal 
influences	 on the cardiac pacemaker as one of the important 
functions	of	the	autonomic	nervous	system.	It	is	found	to	be	lower	
with	refractory	epilepsy,	possibly	resulting	from	parasympathetic	
or	vagal	reduction.	This	can	make	patients	more	susceptible	to	
tachycardia	 and	 fibrillation	 and	 possibly	 sudden	 unexpected	
death	 (SUDEP)	 [7].	With	 the	 advent	 of	 simultaneous	 EEG	 and	
ECG	recording,	different	types	of	ictal	cardiac	dysrhythmia	have	
been reported, and this has given some insight about a possible 
mechanism	for	SUDEP	[8].	

Analysis	 of	 ECG	 signal	 of	 epileptic	 patients	 having	 seizure	 has	
been	reported	by	a	several	researchers.	Al-Aweel	et	al.	[9]	used	
post-ictal	heart	rate	data	of	a	heterogeneous	group	of	patients	
with	partial	epilepsy	and	they	observed	‘this	pattern	is	marked	by	
the appearance of transient but prominent low-frequency heart 
rate	oscillations	(0.01	Hz	to	0.1	Hz)	immediately	following	five	of	
11	seizures	recorded	in	5	patients’	and	remarked	that	‘this	finding	
may be a marker of neuro-autonomic instability, and, therefore, 
may	have	implications	for	understanding	perturbations	of	heart	
rate	control	associated	with	partial	seizures’.	Later,	analyzing	the	
same	dataset	Amaranth	 [10]	described	 ‘the	 implementation	of	
power	spectral	density	(PSD)	technique	to	analyze	ECG	recording	
of	post-ictal	heart	rate	oscillations	in	partial	epilepsy’.	Zijlmans	et	
al.	[11]	observed	some	ECG	abnormalities	in	the	pre-ictal	period	
of	partial	and	generalized	seizures	such	as	T	wave	inversion	and	
ST	elevation/depression.	Leutmezer	et	al.	 [12]	and	Elmpt	et	al.	
[13]	modelled	heart	rate	signal	using	curve	fitting	methodology	
to	 detect	 seizure	 onset	 from	 ECG	 signals.	 Wong	 et	 al.	 [14]	
investigated	ECG	signals	in	a	first	seizure	clinic	and	found	a	close	
cooperation	between	cardiology	and	neurology.	Surges	et	al.	[15]	
showed the QT interval to be shortened during the early post-
ictal	 phase	 in	 patients	 suffering	 from	 refractory	 temporal	 lobe	
epilepsy. Many more studies have been reported where both 
pre-ictal and post-ictal studies have been done on ECG signals 
with	a	motivation	of	extracting	relevant	 important	 information	
[1,16-19].	 Jansen	 et	 al.	 [20]	 reported	 changes	 in	 heart	 rate	 in	
temporal-lobe and frontal-lobe seizures in childhood epilepsy. 
Varon	 et	 al.	 [21]	 proposed	 the	 necessity	 of	 development	 of	
user friendly warning systems to improve the quality of life of 
patients	 suffering	 from	 epileptic	 seizures	 from	 the	 respective	
changes in heart rate during the pre-ictal, ictal and post-ictal 
phases.	 Van	 der	 Kruijs	 et	 al.	 [22]	 investigated	 the	 autonomic	
nervous	 system	 functioning	 with	 epileptic	 seizures	 in	 pre-ictal	
time	course	of	HRV.	In	a	recent	study	Varon	et	al.	[23]	have	also	
suggested	 seizures	 to	 effect	 autonomic	 control	 of	 heart	 rate	
and	 respiration.	 They	 studied	 ECG	 signals	 of	 patients	 suffering	
from focal and generalized seizures proposing two algorithms 
namely,	principal	component	analysis	and	phase	rectifying	signal	
averaging	 to	 quantify	 morphology	 changes	 in	 QRS	 and	 cardio	
respiratory	interactions	respectively.	

Kolsal	et	al.	[24]	have	reported	a	study	on	heart	rate	variability	
in	children	with	epilepsy	to	predict	seizure.	The	finding	of	Kolsal	
et	 al.	 [24]	 is	 interesting	but	 the	 technique	 that	 has	 been	used	
for	analysis	is	the	conventional	linear	technique	which	has	been	
challenged	 for	quite	 some	time	 for	non-stationary	 signals.	Any	
signal, the spectrum may cover wide range of frequencies and 
conventional	 time	 and	 frequency	 domain	 analysis	 techniques	
based	 on	 the	 linear	 fluctuation	 of	 heart	 rate	 is	 insufficient	 to	
outline	the	changes	in	heart	rate	dynamics	[25-36].	To	quantify	
this, nonlinear dynamics based methods such as fractal analysis 
and	chaos	theory	have	been	introduced	[37-39].	These	techniques	
have quite successfully been implemented on HR signals and 
provided	significant	clinical	information	on	cardiac	diseases	[40-
45],	but	are	yet	to	be	used	on	a	few	more	fields	like	evaluation	of	
autonomic	cardiovascular	dysfunction	in	epilepsy	etc.

Long-term	 memory-like	 structures	 are	 characterized	 by	 the	
amplitudes	 of	 the	 frequency	 (f)	 spectrum	 following	 a	 scale	
free	power-law	 relationship	of	1/f.	Cardiac	time	series	exhibits	
similar	 character	 where	 the	 long-range	 correlations	 indicate	
that,	 normally	 the	 fluctuations	 on	 one	 scale	 are	 self-similar	 to	
those	on	other	scales	[46].	Assuming	the	scaling	properties	were	
homogeneous	 throughout	 the	entire	signal,	cardiac	time	series	
were	treated	as	monofractal	signals	[47-54].	With	advancement	
in analysis techniques, later it was revealed that the behavior 
of	 cardiac	time	 series	 could	not	be	adequately	quantified	by	a	
single scaling parameter since it is far more inhomogeneous and 
non-stationary	which	is	a	clear	indication	that	the	dynamics	of	HR	
fluctuations	has	a	higher	level	of	multiscale	complexity.	That	led	
to	application	of	multi-exponent	multi-fractal	analysis	on	cardiac	
time	series	of	normal	subjects,	patients	with	cardiac	disease	and	
also	study	of	mice	[52,53,55-58].	

Numerous	 EEG	 studies	 demonstrate	 its	 nonlinear	 and	 non-
stationary	 character	 [59-62].	 Like	 EEG,	 ECG	 signals	 are	 also	
nonlinear	and	non-stationary	[63-70].	Ivanov	et	al.	[71]	reported	
healthy	 human	 interbeat	 intervals	 to	 exhibit	 multifractal	
properties.	 Amaral	 et	 al.	 [72]	 also	 reported	 the	 multifractal	
behavior	of	HRV.	Wang	et	 al.	 [73]	 too	 analyzed	ECG	 signals	 of	
healthy	 young	 adult	 subjects	 and	 old	 ones	 and	 characterized	
their	multifractality.

In	 recent	 years,	 complex	 systems-natural	 or	 man-made	 are	
being studied applying rigorous chaos based nonlinear methods. 
EEG,	ECG	and	EMG	signals	are	examples	of	such	systems	which	
have been studied and reported in the light of this nonlinear 
methodology	 [74-77].	 Unfortunately	 utilizing	 the	 state	 of	 the	
art methods of nonlinearity, ECG signals had not been studied in 
detail	except	by	Jiang	et	al.	[78],	where	ECG	signals	were	studied	
applying	visibility	graph	methods.	But	there	also	no	quantitative	
assessment	 on	 the	 change	 of	 ECG	 patterns	 due	 to	meditation	
had	been	analyzed.	In	an	earlier	work,	Dutta,	et	al.	[79]	applied	
multifractal	 detrended	 fluctuation	 analysis	 (MFDFA)	 to	 human	
EEG	 for	normal	and	epileptic	patients	 in	different	physiological	
and pathological states. The results showed that the degree of 
multifractality	 of	 EEG	 for	 patients	 in	 an	 epileptic	 seizure	were	
much	 higher	 compared	 to	 normal	 healthy	 people.	 Significant	
difference	 was	 also	 found	 in	 the	 degree	 of	 multifractality	 for	
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Method of Analysis
We have	performed	a	multifractal	analysis	of	the	ECG	recordings	
of	post-ictal	partial	seizures	in	five	women	patients	following	the	
prescription	of	Kantelhardt	et	al.	[84].

Let	us	suppose	x(i)	for	i	=1,	............,	N,	be	a	non-stationary	time	
series of length N.	The	mean	of	the	above	series	is	given	by

( )
1

1 N

ave
i

x x i
N =

= ∑ 	 	 	 		 	 																	(1)

Considering  as the increments of a random walk process 
around	the	average,	the	trajectory	can	be	obtained	by	integration	
of the signal.

( ) ( )1
1.......Ni
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Y i x k x for i

=
= − =  ∑ 	 																																															(2)

The level	of	measurement	noise	present	in	experimental	records	
and	the	finite	data	are	also	reduced	by	the	integration	thereby	
dividing	the	integrated	time	series	into	Ns non-overlapping bins, 
where	Ns	=	int(N/S)	and	where	s	is	the	length	of	the	bin.	As	N	is	
not	a	multiple	of	s,	a	small	portion	of	the	series	is	left	at	the	end.	
Again,	 to	 include	 that	 left	 part,	 the	 entire	 process	 is	 repeated	
in	a	similar	way	starting	from	the	opposite	end,	leaving	a	small	
portion	at	the	beginning.	Hence,	2Ns bins are obtained altogether 
and	for	each	bin	least-square	fit	of	the	series	is	done	followed	by	
determination	of	the	variance.
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For	each	bin	ν,	ν	=1	........	Ns and

( ) ( ) ( ){ }2
2

1

1, s
s vi

F s v Y N v N s i y i
s =

= − − + −  ∑ 	 	 																										(4)	

For	 ν	=	Ns	 +	1........,	 2	Ns, where yν	 (i)	 is	 the	 least	 square	fitted	
value	 in	 the	bin	 ν.	 In	our	 research	work	we	have	performed	a	
least	square	linear	fit	(MFDFA-1).	The	study	can	also	be	extended	
to	 higher	 orders	 by	 fitting	 quadratic,	 cubic,	 or	 higher	 order	
polynomials.

The	 qth	 order	 fluctuation	 function	 Fq(s)	 is	 obtained	 after	
averaging	over	2	Ns, bins,

( ) ( )
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2 2 2
1

1/ 2 ,s
qqN
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   =       
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where	 q	 is	 an	 index	which	 can	 take	 all	 possible	 values	 except	
zero,	 as	 the	 factor	 1/q	 becomes	 infinite	 with	 zero	 value.	 The	
procedure can be repeated by varying the value of s. With the 
increase in the value of s Fq S increases and for the long-range 
power correlated series Fq (s) shows power law behaviour,

     ( ) ( )h q
qF s s∝

If	such	a	scaling	exists,	in	Fq will depend linearly on s with slope 
h(q).	In	general,	the	exponent	h(q)	depends	on	q.	For	a	stationary	

normal humans with eyes open and eyes closed. Further in 
another	 work	 Ghosh	 et	 al.	 [80]	 studied	 the	 cross-correlation	
of EEG signals during seizure and in seizure free intervals of 
epileptic	 patients	 in	 the	 investigation	 of	 complex	 signals	 for	
assessment	of	cross-correlation	among	two	nonlinear	time	series	
produced	by	real	biological	systems	using	multifractal	detrended	
cross-correlation	 analysis	 (MFDXA)	methodology	which	 is	 used	
with high degree of success. The study revealed that, in the 
epileptogenic zone among seizure and seizure free interval, the 
degree	of	cross-correlation	is	more.

Since these analyses have provided important and meaningful 
information	 about	 the	 brain	 dynamics,	 we	 have	 therefore	
been encouraged to use those methods in post-ictal 
electrocardiographic	 information	applying	precisely	MFDFA	the	
results of which are not only new but a step forward towards 
identifying	 diagnosis,	 onset	 and	 prognosis.	 In	 addition,	 the	
application	 of	 MFDFA	 on	 pre-ictal	 and	 post-ictal	 ECG	 signals	
together	with	larger	sample	size	can	yield	a	better	result	towards	
identifying	diagnosis,	onset	and	prognosis.	Again,	in	the	modern	
scientific	 fields	 of	 studying	 different	 heart	 diseases,	 though	
MFDFA	is	a	widely-used	methodology	[81-83]	but	to	the	best	of	
our knowledge no study has been reported about the changes 
in	heart	rate	dynamics	after	occurrence	of	seizure	using	MFDFA.	
The	 application	 of	 MFDFA	 methodology	 on	 ECG	 patterns	 can	
help	in	understanding	the	changes	that	occur	in	heart	rate	after	
patients	have	encountered	seizure.

Kantelhardt	et	al.	 [84]	conceived	MFDFA	for	 the	first	time	as	a	
generalization	 of	 the	 standard	 detrended	 fluctuation	 analysis	
(DFA),	 and	 have	 applied	 it	 successfully	 to	 study	 multifractal	
scaling	behaviour	of	various	non-stationary	time	series	[84-90].	
The	application	of	MFDFA	provides	a	method	of	determining	the	
self-similarity or persistence in the series.

Data
This	 preliminary	 report	 is	 based	upon	analysis	 of	 7-time	 series	
obtained	 from	 “PhysioNet”	 (https://www.physionet.org/
physiobank/database/szdb/)	 [9].	 The	 data	 contains	 11	 partial	
seizures	recorded	in	five	women	patients,	aged	between	31	and	
48	 years,	 lasting	 from	 15-110	 seconds	 during	 continuous	 EEG,	
ECG	and	video	monitoring	[91].	Multiple	seizures	were	recorded	
for	 2	 subjects.	 The	 patients	 were	 without	 clinical	 evidence	
of	 cardiac	 disease	 and	 had	 partial	 seizures	 with	 or	 without	
secondary	 generalization	 from	 frontal	 or	 temporal	 foci.	 The	
recordings were made under a protocol which was approved by 
Beth	Israel	Deaconess	Medical	Center's	 (BIDMC)	Committee	on	
Clinical	Investigations.

“Data	were	analyzed	off-line	using	customized	software.	Onset	
and	 offset	 of	 seizures	 were	 visually	 identified	 to	 the	 nearest	
0.1	 second	 by	 an	 experienced	 electroencephalographer	 (DLS)	
blinded	with	respect	to	the	HRV	analysis.	Continuous	single-lead	
ECG	 signals	 were	 sampled	 at	 200	 Hz.	 From	 the	 digitized	 ECG	
recording,	a	heartbeat	annotation	file	(a	list	of	the	type	and	time	
of	occurrence	of	each	heartbeat)	was	obtained	using	a	version	of	
commercially	available	arrhythmia	analysis	software”	developed	
by	Ho	et	al.	[43].
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time	series,	h(2)	 is	 identical	with	 the	Hurst	exponent	H.	h(q)	 is	
said	 to	 be	 the	 generalised	 exponent.	 The	 value	of	 h(0)	 cannot	
be obtained directly, because Fq	blows	up	at	q	=	0.	Fq cannot be 
obtained by normal averaging procedure; instead a logarithmic 
averaging procedure is applied.

( ) ( ){ } ( )2 02
0 1

exp 1/ 4 ,sN h
s v

F s N In F s v s
=

 =  ∑ � 		 																										(6)

A	 monofractal	 time	 series	 is	 characterized	 by	 unique	 h(q)	 for	
all	 values	 of	 q.	 If	 small	 and	 large	fluctuations	 scale	 differently,	
then	 h(q)	will	 depend	 on	 q,	 or	 in	 other	words	 the	 time	 series	
is	 multifractal.	 Kantelhardt	 et	 al.	 [92]	 have	 explained	 that	 the	
values	of	h(q)	for	q<0	will	be	larger	than	that	for	q>0.

The	generalized	Hurst	exponent	h(q)	of	MFDFA	is	related	to	the	
classical	scaling	exponent	 ( ) 	by	the	relation,

( ) ( ) 1q qh qτ = − 	 	 	 	 		 																												(7)

a	monofractal	series	with	long	range	correlation	is	characterized	
by	linearly	dependent	q-	order	exponent	τ(q)	with	a	single	Hurst	
exponent	H.	Multifractal	signals	have	multiple	Hursts	exponent	
and ( )qτ 	depends	nonlinearly	on	q	[93].	The	singularity	spectrum	
f(α)	is	related	to	τ(q)	by	Legendre	transform	[94].

( ) ( )'h q qh qα = + 		 	 	 	 																											(8)	

 
( ) ( ) 1f q h qα α= − +  

		 	 																																																	(9)	

 
In	 general,	 the	 singularity	 spectrum	 quantifies	 the	 long-range	
correlations	 property	 of	 the	 time	 series	 [95].	 The	 multifractal	
spectrum	is	capable	of	providing	information	about	the	relative	
importance	 of	 various	 fractal	 exponents	 in	 the	 time	 series,	
e.g.	 the	width	of	 the	 spectrum	denotes	 range	of	 exponents.	A	
quantitative	characterization	of	the	spectra	can	be	done	by	least-
squares	fitting	it	to	quadratic	function	[96]	around	the	position	of	
maximum	 0α , 

( ) ( ) ( )2
0 0f A B Cα α α α α= − + − + 		 	 																							(10)

where	 C	 is	 a	 additive	 constant,	 ( )0 1C f α= = ; B indicates the 
asymmetry of the spectrum, and zero for a symmetric spectrum. 
The	 width	 of	 the	 spectrum	 can	 be	 obtained	 by	 extrapolating	
the	fitted	curve	to	zero.	Width	W	is	defined	as	 1 2W α α= − with 
( ) ( )1 2 0f fα α= = .	 It	 has	 been	 proposed	 by	 some	workers	 [97]	

that	the	width	of	the	multifractal	spectrum	is	a	measure	of	the	
degree	of	multifractality.	Singularity	strength	or	Holder	exponent	
α	and	the	dimension	of	subset	series	 ( )f α can be obtained from 
reln	9	and	10.	For	a	monofractal	 series,	h(q)	 is	 independent	of	
q.	Hence	from	relation	9	and	10	it	is	evident	that	there	will	be	a	
unique	value	of	α	and	 ( )f α ,	the	value	of	α	being	the	generalized	
Hurst	 exponent	 H	 and	 the	 value	 of	 ( )f α  being 1. Hence the 
width of the spectrum will be zero for a monofractal series. The 
more	the	width,	the	more	multifractal	is	the	spectrum.

The	 autocorrelation	 exponent	 γ	 can	 be	 estimated	 from	 the	

relation	given	below	[98,99]

( )( )2 2 2h qγ = − = 		 	 	 																																											(11)

For	uncorrelated	or	short-range	correlated	data,	h(2)	is	expected	
to	have	a	value	0.5	while	a	value	greater	than	0.5	is	expected	for	
long-range	correlations.	Therefore,	for	uncorrelated	data,	γ	has	a	
value 1 and the lower the value the more correlated is the data.

Multifractality	may	be	of	two	types:	(i)	“due	to	broad	probability	
density	 function	 for	 the	 values	 of	 time	 series	 and	 (ii)	 due	 to	
different	long	range	correlation	for	small	and	large	fluctuation”.	
To	 ascertain	 the	 origin	 of	 multifractality	 the	 time	 series	 is	
randomly	shuffled	and	then	analyzed.	While	shuffling	the	values	
are	 arranged	 randomly	 so	 that	 all	 correlations	 are	 destroyed.	
The	 shuffled	 series	 will	 exhibit	 non-multifractal	 scaling	 if	
multifractality	is	due	to	long	range	correlation	and	if	it	is	due	to	
broad	probability	density,	then,	the	original	h(q)	dependence	is	
not	changed,	h(q)	=	hshuf(q).	“But	 if	both	kinds	of	multifractality	
are	present	in	a	given	series,	then	the	shuffled	series	will	show	
weaker	multifractality	than	the	original	one”	[84].

Superiority of MFDFA Over Other 
Conventional Methods
MFDFA	has	achieved	highest	precision	in	the	scaling	analysis.	The	
results obtained by this method are more reliable compared to 
other	 conventional	 methods	 like	 Wavelet	 Analysis,	 detrended	
moving	 average	 (DMA),	 backward	 moving	 average	 (BMA),	
modified	 detrended	 fluctuation	 analysis	 (MDFA),	 continuous	
DFA	 (CDFA),	 Fourier	DFA	etc.	 Thus,	 for	assessing	 correlation	 in	
nonlinear	 time	 series,	 it	 is	 considered	 as	 a	 very	 rigorous	 and	
robust	 tool.	Again,	MFDFA	 requires	 less	effort	 in	programming	
as	compared	to	conventional	DFA,	since	it	does	not	require	the	
modulus	 maxima	 procedure.	 According	 to	 some	 authors,	 the	
performance	of	MFDFA	is	better	than	other	multifractal	analyses	
methods	[84,100,101].	Furthermore,	MFDFA	allows	detection	of	
multifractality	 in	both	stationary	as	well	as	non-stationary	time	
series.	Oswiecimka	et	al.	[102]	have	shown	that	the	application	
of	 MFDFA	 is	 the	 most	 reliable	 one;	 it	 is	 even	 more	 reliable	
compared to the most popular methodology wavelet transform 
modulus	maxima	(WTMM).

However,	there	are	certain	drawbacks	in	the	MFDFA	method.	The	
problem	may	arise	in	the	identification	of	correlation	properties	
of real data where a large amount of data is missing or removed 
due	to	artifacts.	Although	it	has	been	mentioned	in	the	work	of	
Ma	et	al.	[103]	major	findings	is	not	disturbed	even	with	loss	of	
data.

Results
The	non-stationary	times	 series	of	 ECG	data	of	partial	 seizures	
recorded	 in	 five	 women	 patients	 are	 analyzed	 following	 the	
method described above. 

Multifractal	 analysis	was	employed	 for	 each	 set.	 The	data	was	
transformed to obtain the integrated signal. This process is 
effective	in	reducing	noise	in	the	data.	The	integrated	time	series	
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was	divided	to	Ns	bins,	where	Ns	=	int(N/s),	N	is	the	length	of	the	
series. The qth	order	fluctuation	function	Fq(s)	for	q	=	-10	to	+10	in	
steps of 1 was determined. Figure 1 depicts the linear dependence 
of	ln	Fq	on	ln	s	suggesting	scaling	behaviour.	The	slope	of	linear	
fit	to	ln	Fq(s)	versus	ln	s	plots	gives	the	values	of	h(q).	The	values	
of ( )qτ 	were	 also	 determined.	As	we	have	mentioned	 earlier,	
nonlinear dependence of on ( )qτ 	on	q	suggests	multifractality,	
whereas for a monofractal series ( )qτ  depends linearly on q. 
The	values	of	h(q)	and	 ( )qτ  of all the post-ictal ECG signals are 
depicted in Figures 2 and 3	respectively.

The nonlinear	dependence	of	τ(q)	on	q	and	the	dependence	of	
h(q)	on	q	gives	evidence	for	the	multifractality	of	the	post-ictal	
heart-rate	 oscillations.	 Figure 2 also depicts that the degree 
of	 dependence	 of	 h(q)	 on	 q,	 or	 in	 other	words,	 the	 degree	 of	
multifractality	 is	different	 in	different	cases.	From	the	Figure 2 
we	can	also	see	that	for	q=2	the	generalized	Hurst	exponent	h(q)	
of all the ECG signals is greater than 0.5 which means that long 
range	correlation	and	persistent	properties	exist	in	all	the	sets.

We	 can	 also	make	 a	 quantitative	 determination	 of	 the	 degree	
of	multifractality	 from	 the	multifractal	 spectrum.	Ashkenazy	et	
al.	 [97]	have	associated	 the	width	of	 the	multifractal	 spectrum	
( ( )f α  versus α )	 with	 the	 degree	 of	multifractality.	 Figure 4 
shows	the	multifractal	spectrum	of	seven	post-ictal	ECG	signals.

The	 values	 of	 multifractal	 width	 w	 obtained	 by	 fitting	 the	
multifractal	spectrums	to	Eq.	(8)	are	listed	in	Table 1, from which 
we	can	observe	that	the	multifractal	widths	of	all	the	seven	post-
ictal	ECG	signals	are	different	ranging	from	as	low	as	1.17	to	as	
high as 3.95 We also included another Table 2,	the	main	findings	
of	which	are	published	in	our	earlier	communication	[104].	

Table 2 shows on the basis of analysis of data obtained from 
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linear	fit	of	the	curves	h(q)	is	obtained	defining	scaling	
behaviour of the series.

Figure 1

BIDMC	 congestive	 heart	 failure	 database	 of	 five	 subjects	 that	
for	normal	heart,	value	of	multifractal	width	ranges	from	1.073	
to 1.179,	whereas	 for	 patients	 suffering	 from	congestive	heart	
failure	(CHF),	the	corresponding	values	are	from	1.146	to	2.314.	A	
comparison of Tables 1 and 2	clearly	reveals	that	the	multifractal	
width	of	ECG	recordings	of	seizure	patients	is	greater	than	that	
observed	for	healthy	subjects.	Further	in	some	cases	the	width	
of	ECG	of	the	seizure	patients	is	found	to	be	more	than	that	of	
CHF also. Table 1	further	reports	the	variation	of	auto-correlation	
exponent	γ	of	the	ECG	signals.	
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Further from Table 1	we	can	see	that	the	value	of	multifractal	
width for sz06 is the	least	and	the	auto-correlation	exponent	
γ	 is	0.48	which	 indicates	a	high	degree	of	correlation	as	we	
know	lower	the	value	of	γ	higher	is	the	degree	of	correlation.	
Thus,	from	these	two	values	we	can	say	that	for	sz06	the	effect	
of	seizure	on	heart	oscillations	is	the	least.	Further	the	same	
Table	also	reveals	the	fact	that	for	sz02	the	effect	of	seizure	
on	ECG	 is	 the	maximum	as	 value	of	multifractal	width	w	 is	
twice	 than	 that	of	 rest	and	γ	also	approaches	uncorrelated	
behaviour.

In	 order	 to	 ascertain	 the	 origin	 of	 multifractality,	 the	 ECG	
signals	were	 randomly	 shuffled	and	 then	 analyzed.	Table 1 
clearly	 depicts	 the	 difference	 in	 values	 of	 the	 multifractal	
width	 and	 auto-correlation	 exponent	 for	 the	 original	 and	
shuffled	 series.	 We	 observe	 weaker	 multifractality	 for	 the	
shuffled	series	which	 implies	 that	origin	of	multifractality	 is	
due	 to	 both	 long	 range	 correlations	 and	 broad	 probability	
distribution	function.	Since	the	sample	size	is	relatively	short	
we	 have	 not	 excluded	 the	 origin	 of	 multifractality	 due	 to	
broad	probability	 distribution	 function.	We	 further	 observe	
all	 the	 values	of	 auto-correlation	exponent	 for	 the	 shuffled	
series	 is	close	 to	1,	 indicating	all	 correlations	are	destroyed	
in	 the	 shuffling	 procedure.	 Figures 5-7	 respectively	 depicts	
plots	of	h(q)	vs.	q,	 ( )qτ  vs. q, and ( )f α vs. α  for the original 
series	and	randomly	shuffled	series	for	a	particular	set.

This analysis	clearly	indicates	that	except	sz02	the	multifractal	
width	 of	 epileptic	 patients	 indicates	 loss	 of	 multifractality	
which	 is	 outcome	 of	 abnormality	 in	 the	 functioning	 of	 the	
heart. This point has already been reported and discussed in 
the	works	of	Ivanov	et	al.	[71]	and	Peng	et	al.	[48].	The	case	
of	the	patient	(sz02)	is	an	uneven	one	since	contrary	to	loss	
of	multifractality	in	other	subjects	the	present	analysis	shows	
an	unusual	higher	degree	of	multifractality.	This	observation	
deserves	special	attention	so	far	as	understanding	of	dynamics	

of electrocardiography is concerned.

Nevertheless,	it	can	safely	be	inferred	that	this	anomalous	fluctuation 
has	genesis	in	the	epileptic	seizure	of	the	patient.
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Figure 4

ECG 
signals

Multifractal Width w                  Auto-correlation Exponent         
Original Shuffled Original Shuffled

sz01 1.815 ± 0.177 0.894 ± 0.044 0.998 ± 0.012 0.995 ± 0.005
sz02 3.950 ± 0.184 0.498 ± 0.009 0.709 ± 0.012 0.856 ± 0.006
sz03 1.661 ± 0.134 0.781 ± 0.029 0.804 ± 0.014 0.962 ± 0.005
sz04 1.527 ± 0.135 0.654 ± 0.020 0.733 ± 0.012 0.993 ± 0.006
sz05 1.269 ± 0.119 0.761 ± 0.025 0.643 ± 0.007 1.085 ± 0.006
sz06 1.165 ± 0.060 0.403 ± 0.006 0.475 ± 0.007 0.942 ± 0.005
sz07 1.604 ± 0.085 0.742 ± 0.031 0.801 ± 0.006 0.908 ± 0.005

γ

Table 1 Values of Multifractal Width (w) and Auto-correlation Exponent (γ ) 
of seven post-ictal ECG signals for original and shuffled series.
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Figure 5
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Plot	 of	 generalized	 Hurst	 exponent	 h(q)	 vs.	 order	 of	
statistical	moments	q	of	original	 and	 shuffled	data	of	a	
particular	 signal.	 The	 shuffled	 time	 series	 shows	 lesser	
fluctuation	as	compared	to	the	original	one.

Figure 6
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We have reasons to comment that the present analysis of ECG 
data	for	post-ictal	patient	with	a	very	sensitive	and	rigorous	non-
linear	 technique	 provides	 information	 irrespective	 of	 cardiac	
status	 of	 post-ictal	 patient	 quantitatively	 which	 is	 not	 at	 all	
possible	with	the	help	of	all	other	existing	techniques.	Needless	
to say, that Table 1 further shows that in case of sz06 the 
multifractal	width	w	is	close	to	width	of	Sample	III	of	Table 2, i.e. 
ECG	data	of	the	patient	suffering	from	CHF.

The	 present	 investigation	 clearly	 indicates	 that	 the	 analysis	 of	
ECG	data	of	post-ictal	patients	with	the	help	of	MFDFA	technique	
is	 the	 proper	 tool	 for	 further	 exhaustive	 investigation	 taking	
large set of data which might be able eventually for supplying 
quantitative	information	about	the	cardiac	status	of	the	patients.	
The	 importance	of	 this	work	can	be	expressed	 in	one	 line	 that	
this	quantitative	approach	is	a	step	forward	towards	assessment	
and	monitoring	of	epileptic	patients	with	the	help	of	quantitative	
information about the cardiac status.

Discussion
The application	of	rigorous	nonlinear	technique	in	analyzing	ECG	
data	of	patients	clearly	supports	the	fact	that	the	epileptic	seizure	
is	 associated	 with	 the	 autonomic	 deregulation.	 The	 analysis	
further	 shows	 the	 degree	 of	 autonomic	 deregulation	 can	 be	
quantified	with	the	help	of	two	parameters	i.e.	the	multifractal	
width	and	auto-correlation	exponent.

However,	along	with	post-ictal	data,	pre-ictal	data	for	different	
epileptic	patients	can	be	analyzed	following	this	technique	which	
possess	a	far	fetching	 importance	for	development	of	software	
where	 the	 findings	 can	 be	 used	 to	 develop	 automatic	 alarm	
before seizure as well as even a precursor of cardiac arrest. 
Since	no	attempt	is	reported	so	far,	in	this	direction	the	present	
analysis provides new data using chaos-based latest state of 
the art methodology which can capture a small change of signal 
giving rise to a large consequence. It deserves emphasizing that 
the	patients	suffering	from	epilepsy	experience	some	significant	
cardiac changes during seizure, causing some serious cardiac 
malfunctions	which	may	lead	to	SUDEP.	Attempts	can	be	made	
through	 continuous	monitoring	 of	 the	multifractal	 parameters	
to	provide	the	 information	about	the	degree	of	serious	cardiac	
malfunction	for	which	proper	medication	can	be	administered	to	
avoid SUDEP.

Conclusion
The	study	reveals	that	the	degree	of	autonomic	deregulation	can	
be	quantified	with	the	help	of	two	parameters,	the	multifractal	
width	and	the	autocorrelation	exponent.
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Figure 7

ECG signals of
healthy people

Multifractal 
Width (w)

ECG signals of
CHF patients

Multifractal  
Width (w)

Sample I 1.107 ± 0.152 Sample I 1.735 ± 0.069
Sample II 1.179 ± 0.139 Sample II 2.314 ± 0.087
Sample III 1.090 ± 0.082 Sample III 1.146 ± 0.239
Sample IV 1.073 ± 0.045 Sample IV 2.313 ± 0.039
Sample V 1.110 ± 0.151 Sample V 1.240 ± 0.132

Table 2 Values of multifractal width (w) of ECG signals of normal healthy 
people and CHF patients (Channel I).
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